

Blood 142 (2023) 3231-3233

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

637.MYELODYSPLASTIC SYNDROMES - CLINICAL AND EPIDEMIOLOGICAL

Chronic Myelomonocytic Leukemia (CMML) with AML Typical Mutations (NPM1, FLT3 or CEBPA) Identify a High-Risk CMML Group Independent of Molecular-Cpss

Sandra Castaño-Díez, MD^{1,2}, Ines Zugasti³, Xavier Calvo, MDPhD^{4,2}, Felicitas Schulz⁵, Alejandro Avendaño Pita^{6,2}, Elvira Mora, MDPhD^{7,2}, Jose Francisco Falantes^{8,2}, Gemma Azaceta^{9,2}, Mariam Ibáñez ^{10,2}, Tzu Chen ^{11,2}, Cristina Notario ^{12,2}, Neus Amer Salas, MD^{13,2}, Mònica López-Guerra ¹⁴, Carlos Jimenez-Vicente, MD ¹⁵, Daniel Esteban ¹⁶, Francesca Guijarro, MD¹⁷, José Ramón Álamo Moreno, MD¹⁸, Albert Cortés-Bullich, MD³, Daniel Munárriz, MD¹⁶, Víctor Torrecillas-Mayayo 19, Ana Triquero 16, Natalia Tovar, MD 18, Alexandra Martínez-Roca, MD 3, Beatriz Merchán Muñoz, MD 15, Esther Carcelero 16, Ulrich Germing 20, Beate Betz 21, María Rozman 18,2, Leonor Arenillas, MD PhD 4,2, Lurdes Zamora, PhD^{22,2}, Maria Diez-Campelo, MD PhD^{23,2}, Blanca Xicoy, MD^{24,2}, Jordi Esteve, MD PhD¹⁵, Marina Díaz-Beyá, MD PhD 1,2

- ¹ Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- ²Grupo Español de Síndromes Mielodisplásicos (GESMD), Madrid, Spain
- ³ Hematology Department, Hospital Clinic de Barcelona, ICMHO, Barcelona, Spain
- ⁴Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, GRETNHE, IMIM, Barcelona, Spain
- ⁵ Dept of Hematology, Oncology and Clinical Immunology, University Clinic, Heinrich Heine University Düsseldorf, Düsseldorf, DEU
- ⁶ Hospital Universitario de Salamanca, Salamanca, Spain
- ⁷ Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- ⁸Complejo Hospitalario Virgen del Rocío, Sevilla, ESP
- ⁹ Hospital Clínico Universitario Lozano Blesa de Zaragoza, Zaragoza, ESP
- ¹⁰ Hospital General Universitario de Valencia, VALENCIA, ESP
- ¹¹ Hospital General Universitario Morales Meseguer, Murcia, Spain
- ¹²Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
- ¹³Hospital Universitario Son Llàtzer, Palma de Mallorca, Spain
- ¹⁴Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
- ¹⁵Hematopoietic Cell Transplantation Unit, Hospital Clínic de Barcelona, ICHMO, Barcelona, Spain
- ¹⁶Hospital Clínic de Barcelona, Barcelona, Spain
- ¹⁷Hematopathology Unit, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- ¹⁸ Hospital Clínic Barcelona, Barcelona, Spain
- ¹⁹University of Barcelona, Barcelona, Spain
- ²⁰Department of Hematology, Oncology and Clinical Immunology, Universitatsklinik Dusseldorf, Dusseldorf, Germany
- ²¹ Institute for Human Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- ²² Hematology Department, Institut Català d'Oncologia Hospital Universitari Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras, Universitat Autònoma de Barcelona, Badalona, Spain
- ²³Department of Hematology, Salamanca-IBSAL University Hospital, Salamanca, Spain
- ²⁴Hematology Service, Hospital Germans Trias I Pujol, Institut Català Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain

CMML is rarely associated with AML typical mutations such as NPM1, FLT3, CEBPA and IDH1/2 (mutAML-CMML). It is unknown what its clinical meaning is and if its presence should change our management into an AML-type treatment. The aim was to describe the characteristics, prognosis and treatment of mutAML-CMML patients.

We studied 83 CMML patients of Hospital Clinic diagnosed between 1998-2022, with Next Generation Sequencing (NGS). We included 53 patients with mutAML-CMML from other institutions.

We identified 31 patients with mutated IDH2 (all c.419G>A p.(Arg140GIn)), 13 with IDH1, 14 with NPM1,7 with CEBPA (4 bZIP) and 11 with FLT3 (3 FLT3-ITD and 7 FLT3-TKD: 6 TKD1 and 2 TKD2 variants, all different from p.(Asp835Tyr) except one).

POSTER ABSTRACTS Session 637

Patient characteristics and outcome of the group with mut IDH1/2 was not significantly different from wt IDH.

Those patients with mut *NPM1*, *FLT3* and/or *CEBPA* presented adverse characteristics and worse prognosis. Therefore, we grouped the patients with these mutations into a category named mutCFN (n=26) (Table 1). The mutCFN incidence in our series was 9%.

The mutCFN patients (n=26) vs wtCFN (n=96) were younger (63 vs 71 years, p=0.004), had more leucocytes (16 vs 7.7x10 9 /L, p=0.015), monocytes (2.9 vs 1.7x10 9 /L, p=0.006), anemia (9.1 vs 11.2 g/L, p<0.001) and bone marrow blasts (11.5 vs 4%, p<0.001). They belonged more frequently to myeloproliferative variant (57.7 vs 30.2%, p=0.012), CMML-2 (69.2 vs 14.7%, p<0.001), high risk CPSS and CPSS-Mol (72 vs 31%, p<0.001; 88.2 vs 44.9%, p=0.001). They showed more transfusion dependence (69.2 vs 22.9%, p<0.001). Co-mutational representation is shown in Figure 1. mutCFN patients have a different co-mutational pattern from wtCFN with more frequently mutated *DNMT3A* (42.9 vs 6.3%, p<0.001), *SF3B1* (15.8 vs 2.3%, p=0.04), *WT1* (10 vs 0%, p=0.03), and less *TET2* (24 vs 58.3%, p=0.003).

mutCFN patients received treatment more frequently than wtCFN (84.6 vs 36.5%, p<0.001) and earlier (0.97 vs 4.6 months, p=0.005). They were more frequently treated with chemotherapy (53.8 vs 7.3%, p<0.001) and alloSCT (61.5 vs 11.5%, p<0.001). The median follow-up was 9.3 years (95% CI, 8-11). The 2-year cumulative incidence of AML (CIR-AML) transformation was higher in mutCFN patients (44% vs 13%, p<0.001) and overall survival (OS) was shorter (25 vs 38 months, p=0.057). Besides, when those who received and alloSCT were censored at time of alloSCT, mutCFN showed an inferior survival (9.6 vs 35.7 months, p<0.01). Multivariate analysis confirmed mutCFN as an adverse prognostic factor independent of age and CPSS-Mol (HR 2.42, IC 95% 1.23-4.76, p=0.011). Because CFN mutation showed independent prognostic value not captured by CPSS-Mol, we added to CPSS-Mol 1 point if patient had mutCFN. We derived a modified CPSS-Mol-CFN score and identified five groups with different median OS of 85 (95% CI, 54-117) vs 74 (95% CI, 53-94) vs 40 (95% CI, 17-63) vs 40 (95% CI, 11-33) vs 40 (95% CI, 15-25) months, p<0.001 with a better predictive capacity than CPSS-Mol (C-index 40).

Nowadays, there is no consensus between the two recent 2022 ICC and WHO classifications, but the identification of *NPM1* or *CEBPA* mutations in cases of CMML could define AML. We analysed the group of patients who harboured bZIP- *CEBPA* or *NPM1* mutations ("mutCN") (n=17) and we found that these patients retained its chemosensitivity (90%CR) and those treated with chemotherapy had better OS (27 vs 9 months, p<0.001).

10 mutCFN patients received alloSCT with a median OS post-alloSCT of 21 months (95% CI, 16-26) and a 2year-CIR-AML of 37.5% (95% CI, 15-61). 5 patients received targeted therapy for a post-transplant relapse: 3 received sorafenib after a molecular relapse with prolonged responses and 2 received an *IDH* inhibitor, one of them persisting with a complete response after 4 years.

We analyzed 5 paired samples (diagnostic CMML-AML transformation). All of the AML related mutations were retained at AML transformation and emerged new mutations in genes of signaling (FLT3, NRAS), transcription (RUNX1, CEBPA) and splicing (STAG2) pathways.

Independently of CPSS-Mol, mutCFN CMML patients have a different profile, closer to AML and with worse prognosis. They could benefit from more aggressive AML-treatment based on chemotherapy and alloSCT when possible. Interestingly, some patients may benefit from approved targeted therapy for AML

Financing ISCIII PI19/01476 PI22/01660, co-financed EU, Emili-Letang HCPB

Disclosures Jimenez-Vicente: Pfizer: Other: Travel Grants; Abbvie: Other: Speaker, Travel Grants. Martínez-Roca: Janssen: Other: travel grants; Takeda: Honoraria, Other: travel grants; Roche: Honoraria, Other: travel grants; Kite: Honoraria, Other: travel grants; Kite: Honoraria, Other: travel grants; Abbvie: Honoraria, Other: travel grants; BMS: Honoraria, Other: travel grants; Gilead: Other: Travel grants. Diez-Campelo: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board fees; Gilead Sciences: Other: Travel expense reimbursement; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees. Esteve: Kronos Bio: Research Funding; Pfizer: Research Funding; Gilead: Consultancy; Abbvie: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding; Astellas: Consultancy, Honoraria; Jazz Pharma: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Consultancy, Honoraria.

POSTER ABSTRACTS Session 637

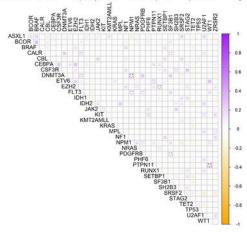


Table 1. Clinical characteristics of patients at diagnosis with mutations in CEBPA, FLT3, NPM1.

Characteristics at diagnostic	mutCEBPA (n=7)	(n=107)	р	mutFL73 (n=11)	wtFLT3 (n=122)	р	mutNPM1 (n=14)	wtNPM1 (n=117)	Р	mut CFN (n=26)	wtCFN (n=96)	р
Age, years median (range)	64 (50-76)	71 (28-95)	NS	58 (42-75)	71 (28-95)	0.005	63 (47-86)	71 (28-95)	0.06	63 (42-86)	71 (28-95)	0.004
Sex (men/women) n (%)	7/0 (100/0)	80/27 (74.8/25.2)	NS	8/3 (72.7/27.3)	92/30 (75.4/24.6)	NS	11/3 (78.6/21.4)	88/29 (75.2/24.8)	NS	21/5 (80.8/19.2)	73/23 (76/24)	NS
Leucocytes, x10°/L median range)	8.9 (3.6- 77.7)	8.3 (2.4-93.7)	NS	17.3 (2.7-55.8)	7.7 (2.4-93.7)	0.02	17.3 (4.4-30.6)	7.6 (2.4-93.7)	0.004	16 (2.7-77.7)	7.7 (2.4-93.7)	0.015
Neutrophils, median (range)	2.6 (0.4-41)	4 (0.4-40.3)	NS	6.5 (0.5-20)	3.4 (0.4-41)	NS	5.1 (0.7-20)	3.5 (0.4-41)	NS	5 (0.4-41)	3.5 (0.4-40.3)	NS
Monocytes, median (range)	1.4 (1.1-29)	1.8 (0.5-33.7)	NS	3.1 (1.5-24)	1.6 (0.5-34)	0.01	5 (1.5-12.2)	1.6 (0.5-33.7)	0.002	2.9 (1.1-29)	1.7 (0.5-33.7)	0.006
% Monocytes, median (range)	22.5 (15- 36.1)	21.5 (10-62.4)	NS	25.3 (10-42)	21.9 (10-62.4)	NS	28 (10-62.4)	21.1 (10-60.9)	NS	28 (10-62.4)	19.1 (10-60)	NS
PLT, x109/L median (range)	107.5 (39- 207)	111.5 (6-982)	NS	70 (6-223)	127 (7-982)	0.02	86 (13-263)	125 (6-982)	NS	92 (6-263)	115 (7-982)	0.07
Hb, g/L median (range)	10.6 (6.4- 13.3)	10.9 (4.9- 16.3)	NS	8.6 (4.9-16.3)	11.1 (6.4-16.1)	0.04	8.1 (4.9-11)	11.3 (6.4-16.3)	<0.001	9.1 (4.9-16.3)	11.2 (6.5-15.9)	<0.00
Blasts MO, % median (range)	12 (6-19)	4 (0-19)	0.002	15 (2-19)	4 (0-19)	<0.001	13.5 (0-19)	4 (0-19)	0.007	11.5 (0-19)	4 (0-18)	< 0.00
Cytogenetic alterations n (%)	2 (28.6)	20 (20.6)	NS	2 (18.2)	22 (19.6)	NS	1 (7.7)	22 (20.4)	NS	4 (16)	19 (21.8)	NS
Dytogenetic risk, n (%) Low Intermediate	5 (83.3) 1 (16.7) 0	79 (81.4) 8 (8.3) 10 (10.3)	NS	9 (81.8) 2 (18.2) 0	92 (82.9) 7 (6.3) 12 (10.8)	NS	12 (92.3) 1 (7.7) 0	88 (82.2) 8 (7.5) 11 (10.3)	NS	21 (87.5) 3 (12.5) 0	70 (80.5) 6 (6.9) 11 (12.6)	NS
Therapy related, n (%)	0	4 (3.9)	NS	0	5 (4.4)	NS	0	5 (4.6)	NS	0	4 (4.4)	NS
FAB, n (%) myelodysplastic	4 (57.1)	71 (66.4)	NS	4 (36.4)	84 (68.9)	0.044	4 (28.6)	82 (70.1)	0.005	11 (42.3)	67 (69.8)	0.012
myeloproliferative ICC/OMS 2022 n (%) CMML -1 CMML -2	3 (42.9) 1 (14.3) 6 (85.7)	36 (33.6) 82 (77.4) 24 (22.6)	0.001	7 (63.6) 3 (27.3) 8 (72.7)	38 (31.1) 93 (76.9) 28 (23.1)	0.001	10 (71.4) 4 (28.6) 10 (71.4)	35 (29.9) 90 (77.6) 26 (22.4)	<0.001	15 (57.7) 8 (30.8) 18 (69.2)	29 (30.2) 81 (85.3) 14 (14.7)	<0.00
CPSS n (%) Low Intermediate-1 intermediate-2 High	1 (14.3) 1 (14.3) 4 (57.1) 1 (14.3)	33 (34) 30 (30.9) 28 (28.9) 6 (6.2)	NS	0 3 (27.3) 7 (63.6) 1 (9.1)	42 (37.5) 33 (29.5) 29 (25.9) 8 (7.1)	0.028	1 (7.7) 1 (7.7) 11 (84.6) 0	41 (38) 34 (31.5) 25 (23.1) 8 (7.4)	<0.001	2 (8)	33 (37.9) 27 (31) 21 (24.2) 6 (6.9)	0.001
Dichotomic CPSS n (%) Low + intermediate-1 Intermediate-2 + high	2 (28.6) 5 (71.4)	63 (64.9) 34 (35.1)	0.1	3 (27.3) 8 (72.7)	75 (67) 37 (33)	0.02	2 (15.4) 11 (84.6)	75 (69.4) 33 (30.6)	<0.001	7 (28) 18 (72)	60 (69) 27 (31)	<0.00
CPSS-Mol n (%) Low Intermediate-1 Intermediate-2 High	0 1 (16.7) 1 (16.7) 4 (66.6)	20 (23) 24 (27.6) 26 (29.9) 17 (19.5)	0.06	0 0 6 (85.7) 1 (14.3)	23 (23) 28 (28) 26 (26) 23 (23)	0.009	0 1 (12.5) 7 (87.5) 0	23 (23.5) 27 (27.6) 25 (25.4) 23 (23.5)	0.003	0 2 (11.8) 10 (58.8) 5 (29.4)	20 (25.6) 23 (29.5) 17 (21.8) 18 (23.1)	0.005
Dichotomic CPSS-Mol n (%) Low + intermediate-1 Intermediate-2 + high	1 (16.7) 5 (83.3)	44 (50.6) 43 (49.4)	NS	0 7 (100)	51 (51) 49 (49)	0.013	1 (12.5) 7 (87.5)	50 (51) 48 (49)	0.06	2 (11.8) 15 (88.2)	43 (55.1) 35 (44.9)	0.001
Transfusion dependence n (%)	3 (42.9)	30 (28)	NS	10 (90.9)	31 (25.8)	<0.001	11 (78.6)	28 (24.3)	<0.001	18 (69.2)	22 (22.9)	<0.001
Patients who received modifying treatment n (%)	6 (85.7)	45 (42.1)	0.04	9 (81.8)	50 (41)	0.01	12 (85.7)	44 (37.6)	<0.001	22 (84.6)	35 (36.5)	<0.001
Patients treated with HMA	5 (71.4)	36 (33.6)	0.096	6 (54.5)	41 (33.6)	NS	6 (42.9)	38 (32.5)	NS	15 (57.7)	30 (31.3)	0.02
Patients treated with chemotherapy	4 (57.1)	14 (13.1)	0.01	6 (54.5)	15 (12.3)	0.002	9 (64.3)	11 (9.4)	<0.001	14 (53.8)	7 (7.3)	<0.00
HMA response n (%) Complete response Marrow response Partial remission Clinical Benefit No response	3 (60) 0 1 (20) 0 1 (20)	10 (30.3) 1 (3) 3 (9.1) 3 (9.1) 16 (48.5)	NS	0 0 0 1 (25) 3 (75)	13 (38.2) 1 (2.9) 4 (11.8) 2 (5.9) 14 (41.2)	NS	2 (40) 0 0 0 0 3 (60)	11 (33.3) 1 (3) 4 (12.1) 3 (9.2) 14 (42.4)	NS	5 (41.7) 0 1 (8.3) 1 (8.3) 5 (41.7)	8 (30.8) 1 (3.8) 3 (11.5) 2 (7.7) 12 (48.2)	NS
Chemotherapy response n (%) Complete response Partial response No response	3 (75) 0 1 (25)	9 (64.3) 1 (7.1) 4 (28.6)	NS	5 (83.3) 0 1 (16.7)	9 (64.3) 1 (7.1) 4 (28.6)	NS	8 (88.9) 1 (11.1) 0	6 (54.5) 0 5 (45.5)	0.046	11 (78.6) 1 (7.1) 2 (14.3)	3 (50) 0 3 (50)	NS
Time to treatment, median (range)		3 (0.07-111.7)	NS		4 (0.07-111.7)	NS	0.9 (0.07-6.3)	3 (0.1-111.7)	0.045	0.97 (0.07-41.3)	4.6 (0.1-111.7)	0.005
Allogeneic transplant n (%)	5 (71.4)	18 (16.8)	0.004	8 (72.7)	20 (16.4)	<0.001	8 (57.1)	18 (15.4)	0.001	16 (61.5)	11 (11.5)	< 0.00
Overall survival median (95% CI)*	10 (3.6-16.4)	31 (19.5-42.6)	0.002	7.6 (5.1-10.1)	34.4 (22.5- 46.3)	<0.001	9.1 (7.9-10.3)	35.8 (22.5-49)	<0.001	9.6 (6.5-12.7)	35.8 (21-51)	<0.001
Overall survival median (95% CI)	22.2 (3.2-41)	36.6 (16.2-57)	0.048	28.5 (27-29.9)	38.2 (19.6- 56.8)	NS	25.1 (4.8-45.5)	38.2 (18.8-57.6)	NS	25.1 (16.3-34)	38.2 (19-57.3)	0.057
Cumulative incidence of transformation to AML at 2 years % (95% CI)	28.6 (2.5- 65.4)	17.7 (11-25.8)	0.5	40 (10.8-68.5)	16.5 (10.3- 23.8)	0.04	50 (20.9-73.5)	14.7 (8.8-22)	<0.001	44 (24-63)	13 (7-21)	<0.001

Figure 1

https://doi.org/10.1182/blood-2023-173311